
Mark scheme – Carboxylic Acids and Esters

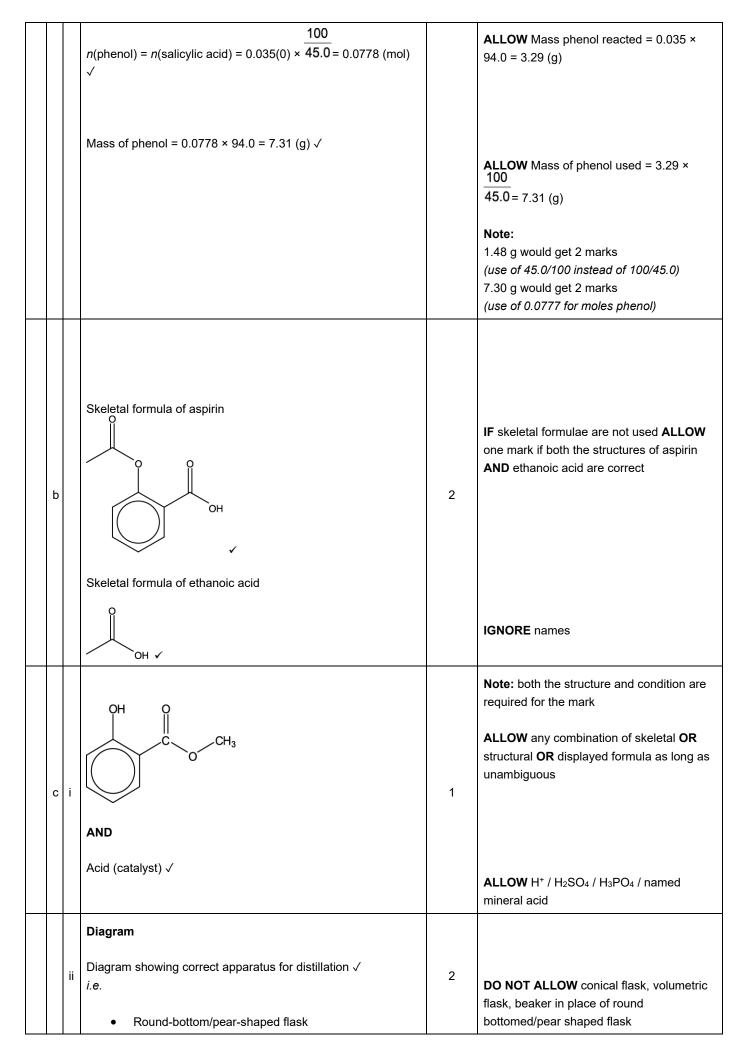
	Questi on		Answer/Indicative content	Marks	Guidance
1		i	Reagents K2Cr2O7 AND acid AND reflux \checkmark Equation HO(CH2)4OH + 4[O] \rightarrow HOOC(CH2)2COOH + 2H2O [O] AND H2O \checkmark Correctly balanced equation \checkmark	3 (AO1.1) (AO2.5) (AO2.6)	ALLOW Na ₂ Cr ₂ O ₇ OR Cr ₂ O ₇ ^{2–} ALLOW H ₂ SO ₄ OR HCI OR H ⁺ ALLOW words. e.g. 'acidified dichromate' ALLOW a small slip in formula for dichromate e.g KCr ₂ O ₇ , <u>Examiner's Comments</u> Many candidates did not correctly balance this equation or missed water as a product entirely.
		ï	$\int_{HO} (CH_2)_2 - (O_1 + O_2)_2 + O_2 + O_1 + O_2 + O_2 + O_1 + O_2 + O_2 + O_1 + O_2 + O_2 + O_2 + O_1 + O_2 + $	2 (AO2.1 ×2)	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous DO NOT ALLOW δ + on H atoms of CH ₂ group ALLOW H-bond for hydrogen bond ALLOW H bond between C=O and H ₂ O, i.e. O—H hydrogen/H bond H δ + O C-(CH ₂) ₂ -C HO H IF diagram is not labelled, ALLOW hydrogen bond/H bond from text Examiner's Comments Candidates who answered this question well had clear, labelled diagrams. Too often, labels, dipoles and lone pairs were missing.
			Total	5	

Equation	ALLOW 2HOCH(R)COOH + Mg
2HOCH(R)COOH + Mg \rightarrow (HOCH(R)COO) ₂ Mg + H ₂	\rightarrow 2HOCH(R)COO ⁻ + Mg ²⁺ ·
	ALLOW multiples
Organic product √	IGNORE poor connectivity to OH grou <i>Given in question</i>
Balance √	Examiner's Comment:
Type of reaction Redox √	Candidates found this part difficult and problem presented many opportunities errors. Many candidates tried to show charges for the salt formed but often to charge was missing on Mg ²⁺ or Mg ⁺ we shown. The balanced equation requires balancing 2 before compound A but the was often omitted. Candidates using skeletal formulae fared better than atter to show structural formulae such as HOCHRCOOH, with many omitting the atom from CHR. Few candidates iden the reaction as redox, with many givin neutralisation instead.
Equation	ALLOW correct structural OR skeleta displayed formula OR mixture of the a as long as non- ambiguous
2HOCH(R)COOH \rightarrow R + 2H ₂ O	ALLOW 1 mark of the 2 equation mar formation of '3 ring' with balanced equ H_0 H_1 H_2 S_0 H_2 $-c$ $-c$
o	ALLOW condensation polymerisation
ii Organic product √	ALLOW addition–elimination 3
	IGNORE elimination IGNORE dehydration
Balance √	Examiner's Comment: As with 4(b)(ii), candidates found this question difficult. It was not often that dimer was seen but, when it was, the
<i>Type of reaction</i> Condensation OR esterification √	structure was usually correct. Balancin required 2H ₂ O and the balancing 2 wa often omitted.
	In contrast with 4(b)(i), many more

				candidates identified the type of reaction, here condensation or esterification.
		Total	6	
				ALLOW correct structural OR skeletal OR displayed formula OR mixture of the above as long as non- ambiguous
6	i	$ \mathcal{K}_{a} = \frac{[H^{+}][C_{4}H_{9}S^{-}]}{[C_{4}H_{9}SH]} \checkmark $ Square brackets required	1	Examiner's Comment: This part was very well answered. Candidates responded with either near molecular formulae, such as C_4H_9SH , structural formulae or with skeletal formulae. Some candidates made careless errors such as omitting the negative charge or showing $[H^+]^2$ as numerator rather than $[C_4H_9S^-]$ $[H^+]$.
				ALLOW correct skeletal OR displayed formula OR mixture of the above as long as non-ambiguous ALLOW C4H9SH ALLOW CH3COOH
	ï	$CH_{3}CH_{2}CH_{2}CH_{2}SH + H_{3}C - O + H_{2}O$ $\longrightarrow H_{3}C - O + H_{2}O + H_{2}O$ Structure of thioester \checkmark Complete equation \checkmark	2	Thioester functional group must be fully displayed, OR as a skeletal formula but allow SC_4H_9 in thioester Examiner's Comment: In this part, candidates were expected to apply their knowledge and understanding of
				esterification to thiols and thioesters. Over half the candidates obtained a correct structure of the thioester. Most of these candidates constructed a balanced equation although some omitted the water product. Common errors included formation of a conventional ester and H ₂ S, and retaining the O atom from the OH in the carboxyl group to form –COOS–. As with 4(b)(i), structural and skeletal formulae were used. Candidates are less likely to omit H atoms if the skeletal formula is used.
	ii i	SH SH	1	IF correct skeletal formula is shown, IGNORE displayed formula in a second structure
				Examiner's Comment:

				Just over half the candidates drew the correct structure, displaying a good understanding of interpreting organic nomenclature when drawing a structure. Common errors included omission of the CH ₂ adjacent to the terminal –SH group and placing the branch or double bond in wrong positions. Some candidates spoilt an otherwise good response by showing a structural formula or a mixture of skeletal and structural formulae.
	i v	$ \xrightarrow{HS} \longrightarrow \xrightarrow{S} \xrightarrow{S} + H_2 0 $ Reactants \checkmark Products AND balanced equation \checkmark	2	ALLOW correct structural OR skeletal OR displayed formula OR mixture of the above as long as non- ambiguous Examiner's Comment: In this part, candidates were expected to apply their knowledge and understanding of condensation to an entirely new context. One mark was allocated for the reactants and this was usually scored. The second mark for the novel cyclic compound and water was much more difficult, aimed at stretch and challenge. A significant number of candidates interpreted the information to obtain a correct cyclic structure but this mark was the domain of the most able candidates.
		Total	6	
7	i	Burette readings Final (reading) 23.15 45.95 32.45 /cm³ 0.60 23.15 10.00 ✓ Initial (reading) 0.60 23.15 10.00 ✓ /cm³ 0.60 23.15 10.00 ✓ • Correct titration results recorded with initial and final readings, clearly labeled AND all readings recorded to two decimal places with last figure either 0 or 5 • Titres Titres Titre / cm³ 22.55 22.80 22.45 ✓ • Correct subtractions to obtain final titres to 2 DP Units •	4	Table not required ALLOW initial reading before final reading ALLOW ECF
		onito		

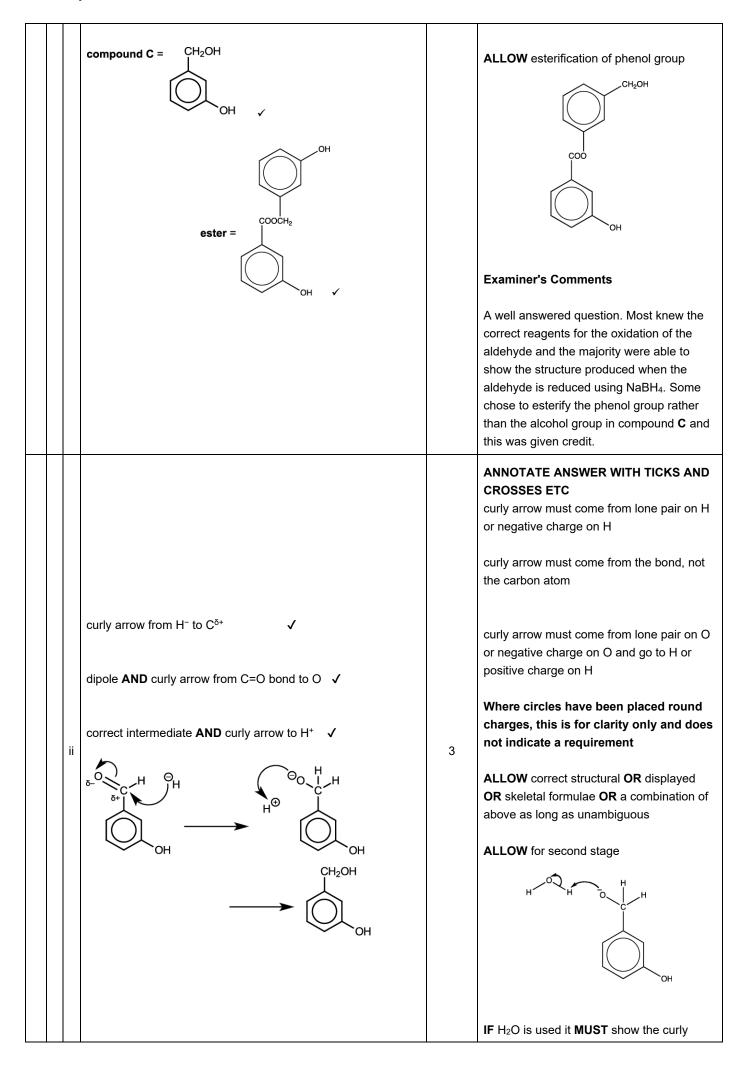
	• Units of cm ³ for initial, final and titres \checkmark		
	Mean titre		ALLOW units with each value ALLOW brackets for units, i.e. (cm ³)
	• mean titre = $\frac{22.55 + 22.45}{2}$ = 22.50 OR 22.5 cm ³ ✓		
	i.e. using concordant (consistent) titres		ALLOW ECF from incorrect concordant titres
			Examiner's Comment: This question should have been four straightforward marks, but it was actually found very challenging by candidates. Most read the scales correctly but then did not present their findings clearly, often scattering unlabelled numbers around, omitting units with absence of any heading linking them to the burettes. 0.60 was very often shown as 0.6 and 22.80 as 22.8. Candidates were expected to take the mean of their closest titres but a significant number took an average of all three titres instead. The mark scheme allowed for a mean titre obtained from incorrect titres. Candidates need to appreciate the importance of communicating their results in a clear and comprehensive way with headings and units, and showing numerical values to the accuracy of the apparatus used.
	ALLOW 3SF or more throughout IGNORE trailing zeroes, e.g. ALLOW 0.084 for 0.0840		ALLOW ECF from incorrect mean titre in 4a(i)
	$n(\text{NaOH}) = 0.0840 \times \frac{22.50}{1000} = 1.89 \times 10^{-3} \text{ (mol) } \checkmark$ $n(\textbf{A}) \text{ in } 250 \text{ cm}^3 = 10 \times 1.89 \times 10^{-3} = 1.89 \times 10^{-2} \text{ (mol) } \checkmark$		e.g. From 22.60 cm ³ (mean of all 3 titres in (i), <i>n</i> (NaOH) = 1.8984 × 10 ⁻³ (mol)
		6	ALLOW ECF from incorrect <i>n</i> (NaOH)
	$M(\mathbf{A}) = \frac{2.495}{1.89 \times 10^{-2}} = 132 \text{ (g mol}^{-1}) \checkmark$		
	<i>M</i> (alkyl group) (= 132 – 75) = 57 √		ALLOW ECF from incorrect <i>n</i> (A)
			ALLOW ECF from incorrect $M(\mathbf{A}) - 75$

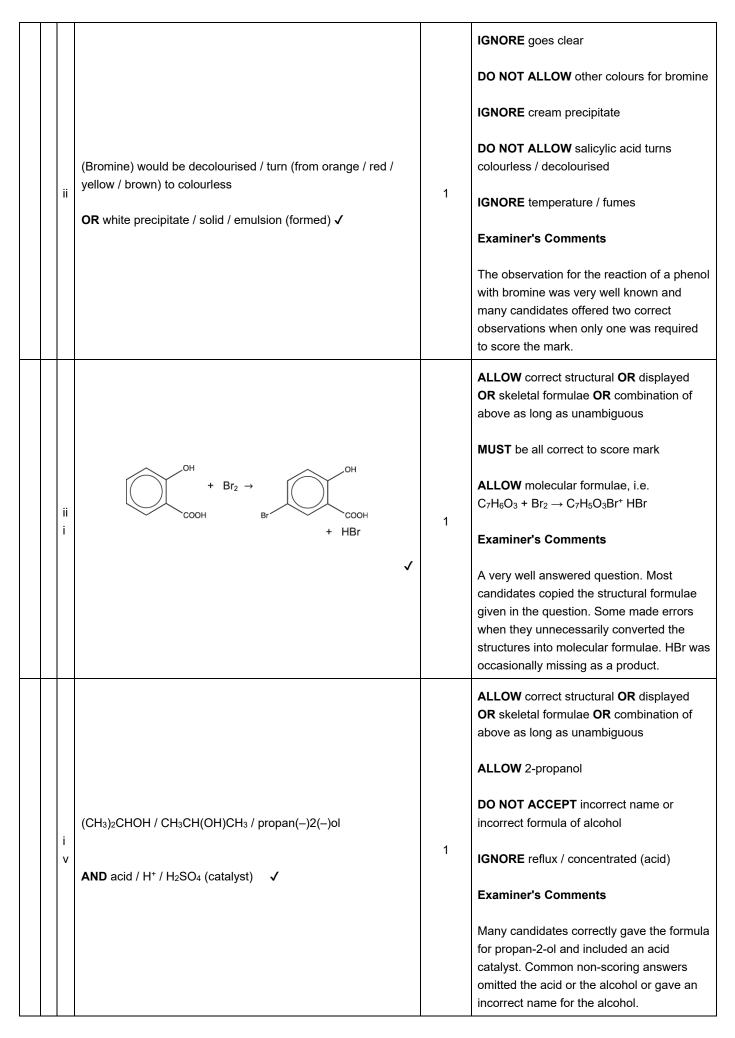

 $R = C_4 H_9 \sqrt{}$ ALLOW ECF for alkyl group closest to calculated M(alkyl group), ALLOW alkyl group in drawn structure with straight chain e.g. for M = 45, **ALLOW** C₃H₇ (43) or branch (es) in wrong position, e.g. for $R = C_4H_9$, $CH_3CH_2CH_2CH_2$ **OR** (CH₃)₃C ALLOW correct structural OR skeletal OR Structure with chiral carbon atoms identified (see * below) displayed formula OR mixture of the above as long as non-ambiguous HO. ΟН IGNORE poor connectivity to OH groups Given in question Common error for 4 marks max 25.00 instead of 22.50 and scaling by × 10 2.10×10^{-3} $\rightarrow 2.10 \times 10^{-2}$ \checkmark \rightarrow 118.81 $\checkmark \rightarrow$ 43.81 $\checkmark \rightarrow$ C₃H₇ \checkmark 25.00 instead of 22.50 and scaling by × 22.50 $2.10 \times 10^{-3} \rightarrow 2.33 \times 10^{-2} \checkmark$ \rightarrow 106.93 \checkmark \rightarrow 31.93 \checkmark \rightarrow C₂H₅ \checkmark No structure with 2 chiral centres possible. **Examiner's Comment:** Most candidates made some headway with this problem. Candidates were expected to process their mean titre from 4(a)(i) in a conventional titration calculation to arrive at a molar mass of 132 g mol⁻¹. From there, candidates could determine a C₄H₉ alkyl group and draw the structure of compound A with two chiral carbon atoms. Most candidates scored some marks but processing beyond the molar mass proved to be difficult for weaker candidates. Some candidates showed a structure with a linear C₄H₉ group which contains one chiral carbon atom. A common error was use of 25.0 cm³, instead of the titre, as the volume of NaOH, obtaining an initial value of 2.10×10^{-3} mol. The mark scheme allowed processing of this value to be credited using error carried forwards. Some candidates omitted to scale their initial value by a factor of ×10, obtaining a molar mass of over 1000 g mol-¹, e.g. 1320 instead of 132. A large range of

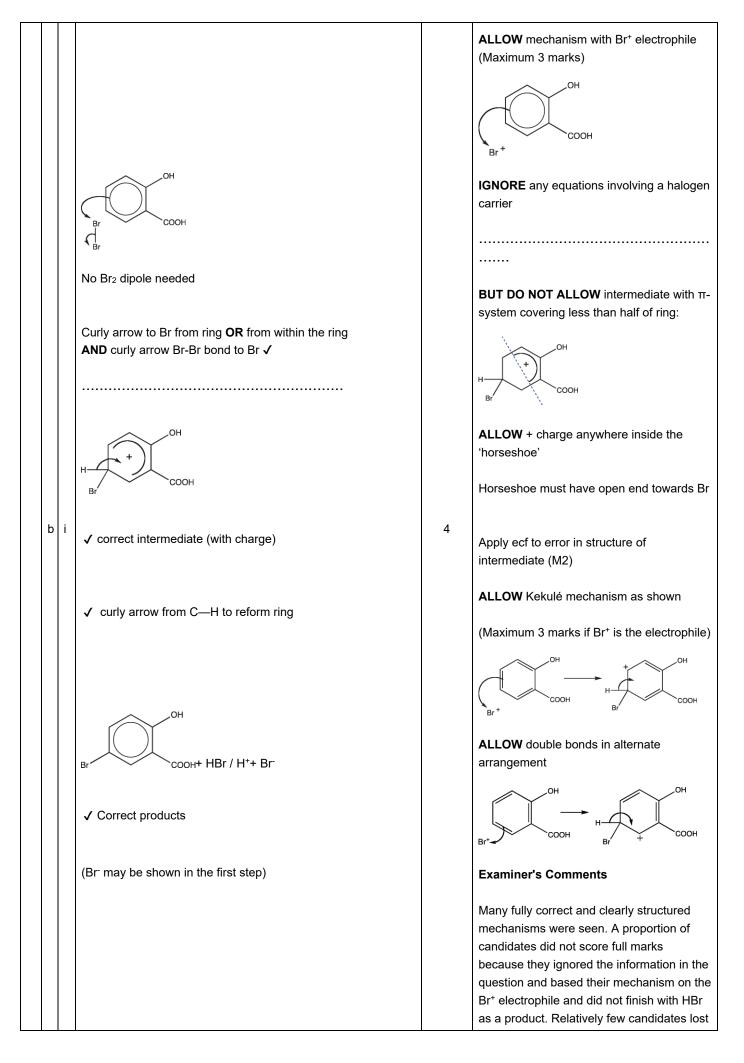
					marks was seen and the question discriminated extremely well.
			Total	10	
8		i	C2H3O3 √	1	
					ALLOW 2,3-dihydroxybutane-1,4-dioic acid
		ii	2,3− dihydroxybutanedioic acid √	1	ALLOW absence of hyphens or extra hyphen or space, e.g. 2,3-dihydroxy butanedioic acid
					ALLOW full stops or spaces between numbers e.g. 2.3 dihydroxybutanedioic acid
			о он н о ссN(СН		ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous
		ii i	 Н ОН Н	2	'End bonds' MUST be shown
			Correct amide link √		IGNORE brackets
			Rest of structure √		IGNORE n
			[H ₃ N ⁺ (CH ₂) ₆ NH ₃ ⁺] [[−] OOC(CHOH) ₂ COO [−]] OR [H ₃ N(CH ₂) ₆ NH ₃] ²⁺ [OOC(CHOH) ₂ COO] ^{2−} Positive ion correct √	2	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous
		i v			ALLOW charge either on N atom or NH₃⁺ Negative charge must be on COO⁻
			Negative ion correct \checkmark		ALLOW[H ₂ N(CH ₂) ₆ NH ₃ ⁺] [⁻ OOC(CHOH) ₂ COOH]
			Total	6	
9	а	i	Reagent and observation sodium carbonate AND Fizzing/effervescence/bubbling √ Equation Correctly balanced equation √	2	Note: both reagent and observation are required for first mark ALLOW name or formula for any suitable carbonate e.g NaHCO ₃ , potassium carbonate etc.
			e.g. 2RCOOH + Na₂CO₃ → 2RCOONa + CO₂ + H₂O		ALLOW reagent from equation if not stated elsewhere
		ii	Reagent and observation Tollens' (reagent) AND	2	Note: both reagent and observation are required for first mark
			Silver (mirror) √		ALLOW ammoniacal silver nitrate OR

		Equation RCHO + [O] → RCOOH √		Ag ⁺ /NH ₃ ALLOW H ⁺ /Cr ₂ O _{7²⁻} OR acidified (potassium/sodium) dichromate AND Orange to green (<i>this would identify the</i> <i>aldehyde from the carboxylic acid, ketone</i> <i>and esters</i>)
b		2,4−dinitrophenylhydrazine AND Orange/yellow/red precipitate √	1	ALLOW errors in spelling ALLOW 2,4(-)DNP OR 2,4(-)DNPH ALLOW Brady's reagent or Brady's Test ALLOW solid OR crystals OR ppt as alternatives for precipitate
с	i	$\begin{array}{l} CH_{3}COOC(CH_{3})_{3}+NaOH\rightarrow CH_{3}COONa+(CH_{3})_{3}COH\\ CH_{3}COONa\checkmark\\ Rest of equation correct\checkmark\\ \hline \label{eq:constraint} OR\\ (CH_{3})_{3}CCOOCH_{3}+NaOH\rightarrow (CH_{3})_{3}CCOONa+CH_{3}OH\\ (CH_{3})_{3}CCOONa\checkmark\\ Rest of equation correct\checkmark\\ \end{array}$	2	Note: the hydrolysis of either ester may be given ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous DO NOT ALLOW molecular formulae of products (question requires structures of products to be shown)
	ii	Reagent and observation $H^+/Cr_2O_7^{2-}$ OR acidified (potassium/sodium) dichromate AND Orange to green (with CH_3OH) \checkmark Equation $CH_3OH + [O] \rightarrow HCHO + H_2O$ OR $CH_3OH + 2[O] \rightarrow HCOOH + H_2O \checkmark$	2	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous DO NOT ALLOW molecular formulae (question requires structures of organic compounds to be shown)
	ii i	 ¹³C NMR (1 mark) (It is) not possible to identify (the esters) with ¹³C NMR AND (both) spectra would contain four peaks (with similar chemical shifts) √ ¹H NMR (2 marks) (It is) possible to identify (the esters) with ¹H NMR 	3	ALLOW 'same number of peaks' in place of 'four peaks'

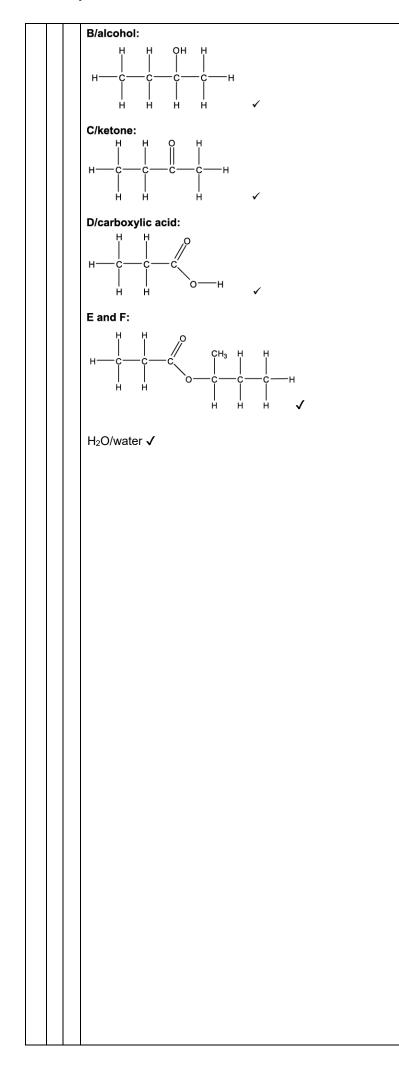
			(¹ H NMR spectrum of) CH ₃ COOC(CH ₃) ₃ has a singlet/peak between 2.0−3.0 (ppm) (¹ H NMR spectrum of) (CH ₃) ₃ CCOOCH ₃ has a singlet/peak between 3.0−4.3 (ppm)		ALLOW any value or range of values within 2.0-3.0 ALLOW any value or range of values within 3.0-4.3
			Any two correct statements √ Possible structures for ketone (2 marks)		
	d		$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	5	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous IGNORE names of ketones
			Total	17	
1 0	а	i	Dipole shown on C=O bond, $C^{\delta+}$ and $O^{\delta-}$, AND curly arrow	3	ANNOTATE ANSWER WITH TICKS AND CROSSES


	from the C=O bond to the O^{δ^-} atom AND Curly arrow from π -bond to C in CO ₂ \checkmark		
	Correct intermediate \checkmark Curly arrow back from C–H bond to reform π -ring \checkmark		DO NOT ALLOW the following intermediate: $ \begin{array}{c} $
			 π-ring must cover more than 1/2 of the ring AND 'horseshoe' in the correct orientation, <i>ie</i> gap towards C with COO⁻ ALLOW + sign anywhere inside the 'hexagon' of intermediate
1		2	ALLOW acid-base
	 (In Stage 1) phenol loses H⁺ AND (In Stage 3) carboxylate ion gains H⁺ √ 		ALLOW both Stage 1 AND Stage 3 involve proton transfer
	FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer = 7.31 (g) award 3 marks		ANNOTATE ANSWER WITH TICKS AND CROSSES
ii	actual $n(\text{salicylic acid}) \text{ produced} = \frac{4.83}{138} = 0.035(0) \text{ (mol) } \checkmark$	3	ALLOW ECF at each stage ALLOW 3 SF up to calculator value correctly rounded for intermediate values 100 ALLOW expected mass compound $\mathbf{E} = \frac{100}{4.83 \times 45.0} = 10.733$ (g)
	theoretical		


		 Condenser (correctly orientated) Stopper/thermometer Delivery tube and suitable collection vessel 		DO NOT ALLOW diagram mark if top of distillation head not closed Note: suitable collection vessels include: conical flask, boiling tube, test-tube, beaker etc.
		Total	13	
1		H CH ₃ O CH ₃ O C C H O C H O C H ₃ C H ₃ C H ₃ C C H ₃ C H ₃ C C H ₃ C C H ₃ C H ₃ C C H ₃ C C H ₃ C C C C C C C C C C C C C C C C C C C	1	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous Examiner's Comments A good discriminator. Many failed to produce the correct cyclic structure.
		Total	1	
1 2		C17H35COOH + NaOH → C17H35COO ⁻ Na ⁺ + H2O √	1	ALLOW C ₁₇ H ₃₅ COONa IGNORE state symbols Examiner's Comments Very well answered. Most candidates could write the correct equation.
		Total	1	
1 3	i	2C2H5COOH + Na2CO3 → 2C2H5COONa + CO2 + H2O ✓	1	IGNORE state symbols and use of equilibrium sign FOR CO ₂ + H ₂ O ALLOW H ₂ CO ₃ ALLOW C ₂ H ₅ COO ⁻ Na ⁺ OR C ₂ H ₅ COO ⁻ + Na ⁺ BUT BOTH + and – charges must be shown ALLOW NaC ₂ H ₅ COO

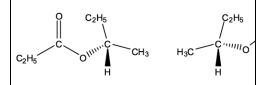

				Examiner's Comments
				Equations for reactions of weak acids continue to improve. Ionic signs within the formula of sodium propanoate were allowed but both were then needed. Common errors included an incorrect formula of sodium propanoate, usually (CH ₃ CH ₂ COO) ₂ Na, sodium carbonate as NaCO ₃ or an equation with correct species but unbalanced. Candidates are recommended to carefully check the formulae for missing atoms.
				ALLOW $C_2H_5COOH + OH^- \rightarrow C_2H_5COO^-$ + H_2O IGNORE state symbols Examiner's Comments
	ii	$H^+ + OH^- \rightarrow H_2 O \checkmark$	1	The required equation using $H^+(aq)$ and $OH^-(aq)$ was commonly seen but a significant number of candidates wrote an equation using $H^+(aq)$ and $CO_3^{2-}(aq)$, perhaps writing an ionic equation for the reaction in (i) rather than a different reaction.
		Total	2	
1	i	HO - C - C - C $HO - C - C - C$ $HO - C - C - C$ $H H O$ $H H O$ $H H O$	3	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous ALLOW —O ⁻ Na ⁺ OR —O ⁻ (cation not required) DO NOT ALLOW —O—Na (covalent bond) DO NOT ALLOW —O (without the sodium) ALLOW delocalised carboxylate
		$HO - C - C - C'$ $H = NH_2 O - CH_2 - O$ $-NH_3^{+} \text{ in second product } \checkmark$		Examiner's Comments The majority scored two marks here. The question had a three mark total for drawing two structures and this may have prompted some candidates to incorrectly form a salt with the alcohol group in reaction 1 . Many were able to draw a correct structure for the ester formed in reaction 2 , but very few protonated the amine group in acidic conditions. The protonation of hydrolysis

				products has been well represented in recent papers.
	ii	perfume / fragrance / flavouring ✓	1	IGNORE solvent OR food additive Examiner's Comments Well answered with most of the correct responses referring to perfumes and flavourings which are the uses listed in the specification. Common responses marked as incorrect were suggestions that this ester could be used for making dyes, polymers or textiles.
	ii	Reaction 3: (hot) ethanolic ammonia ✓ Reaction 4: oxidation ✓ Reaction 5: hydrolysis ✓	3	ALLOW NH ₃ (dissolved) in ethanol IGNORE other conditions ALLOW oxidisation / oxidised DO NOT ALLOW redox ALLOW nucleophilic addition-elimination DO NOT ALLOW nucleophilic substitution IGNORE acid / base Examiner's Comments Most candidates were able to score at least one mark here, usually for correctly identifying reaction 4 as an oxidation reaction. Although the use of excess reagent was not required for reaction 3, some missed ethanol as an essential solvent and reaction 5 was occasionally described as a reduction.
		Total	7	
1 5	i	reagent = K₂Cr₂O⁊ AND H₂SO₄ ✓	3	ALLOW acidified dichromate ALLOW H ⁺ / any acid IGNORE concentration of acid ALLOW Na ₂ Cr ₂ O ₇ / Cr ₂ O ₇ ^{2−} / (potassium OR sodium) dichromate((VI)) ALLOW acidified MnO ₄ [−] ALLOW Tollens' reagent / ammoniacal silver nitrate IGNORE conditions ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous ALLOW ECF from incorrect compound C Check positions of OH groups



					arrow from the negative charge or lone pair on the oxygen atom of the intermediate to H in H ₂ O AND from the O—H bond to the O in H ₂ O. Dipole not required on water molecule Penalise missing –OH on intermediate only IGNORE product – already given credit in part (i) Examiner's Comments The full range of marks was seen. Common errors included missing charges, curly arrows beginning or ending in the wrong place and —OH groups missing or placed in the wrong position on the intermediate structure. Most candidates chose to show the reaction of the intermediate with water rather than with H ⁺ ions
			Total	6	
1	ß	i	$ \underbrace{ \left(\begin{array}{c} 0 \\ 0 \end{array}\right) }_{COO} \underbrace{ \left(\begin{array}{c} 0 \\ Na \end{array}\right) }_{Na} \underbrace{ \left(\begin{array}{c} 0 \\ 0 \end{array}\right) }_{Na} \underbrace{ \left(\begin{array}{c} 0 \\ Na \end{array}\right) }_{Na} \underbrace{ \left(\begin{array}{c} 0 \\Na \end{array}\right) }_{Na} $	1	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous DO NOT ALLOW —O—Na OR -COO-Na (covalent bond) ALLOW —O ⁻ ALLOW —ONA ALLOW —COONA OR
					Examiner's Comments The question asked for the product of the reaction with excess sodium hydroxide. Many answers included the product formed by the reaction of just one of the functional groups. Most commonly the phenol group was left unreacted. The mark scheme permitted the omission of the cation from the formula of the compound but this omission was rarely seen.

			marks for incorrectly positioned curly arrows.
			ALLOW diagram to show movement of lone pair into ring but delocalised ring must be mentioned
	(In salicylic acid)		ALLOW lone pair / pair of electrons on O(H) / phenol is (partially) drawn / attracted / pulled into delocalised ring
			IGNORE 'activates the ring'
	lone pair / pair of electrons on O(H) / phenol is ∽ (partially) delocalised into the ring √		ALLOW more electron rich
	electron density increases / is high ORA √		DO NOT ALLOW charge density or electronegativity
		3	ALLOW (salicylic acid) attracts electrophiles more/more susceptible to electrophilic attack
	Br ₂ / electrophile is (more) polarised ORA \checkmark		ALLOW Br ₂ is (more) attracted OR Br ₂ is not polarised by benzene OR induces dipoles (in bromine / electrophile)
			Delocalise(d) needed to score the first marking point
	QWC : delocalised / delocalized / delocalise <i>etc</i> .		Examiner's Comments
	must be spelled correctly in the correct context at least once		This question was very well answered with the majority of candidates scoring at least two marks. The most common errors were the omitting the words delocalised or lone pair or failure to use the word delocalised in the correct context.
	Total	11	
17	Molar mass of B = 74 ✓ B-F clearly identified	6	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC Check and annotate page 19 below this response Molar mass = $\frac{2.59}{0.035}$ = 74 For structure of B, C, D or E / F ALLOW correct displayed OR correct structural formula OR correct skeletal formula OR mixture of the above as long as
			DO NOT ALLOW missing H atom(s) in a


displayed formula for one structure but **ALLOW** missing H atoms in subsequent structures.

IGNORE names of organic compounds

E and F can be identified either way round

ALLOW H₂O or displayed formula for mark

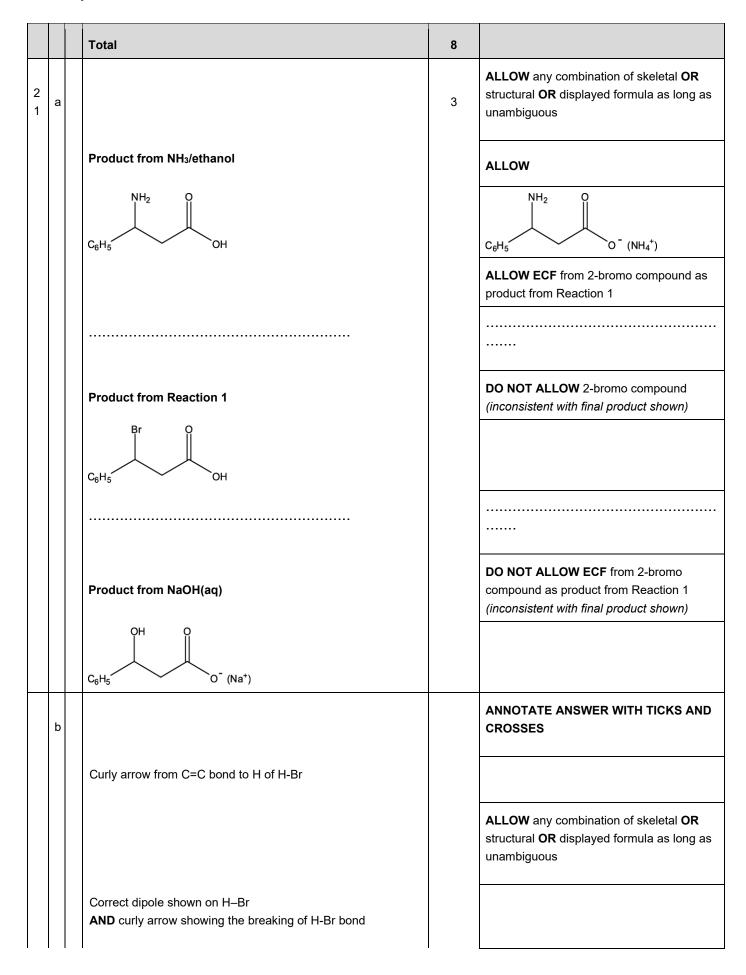
For **E** and $\mathbf{F} - \mathbf{ALLOW}$ the two optical isomers

Examiner's Comments

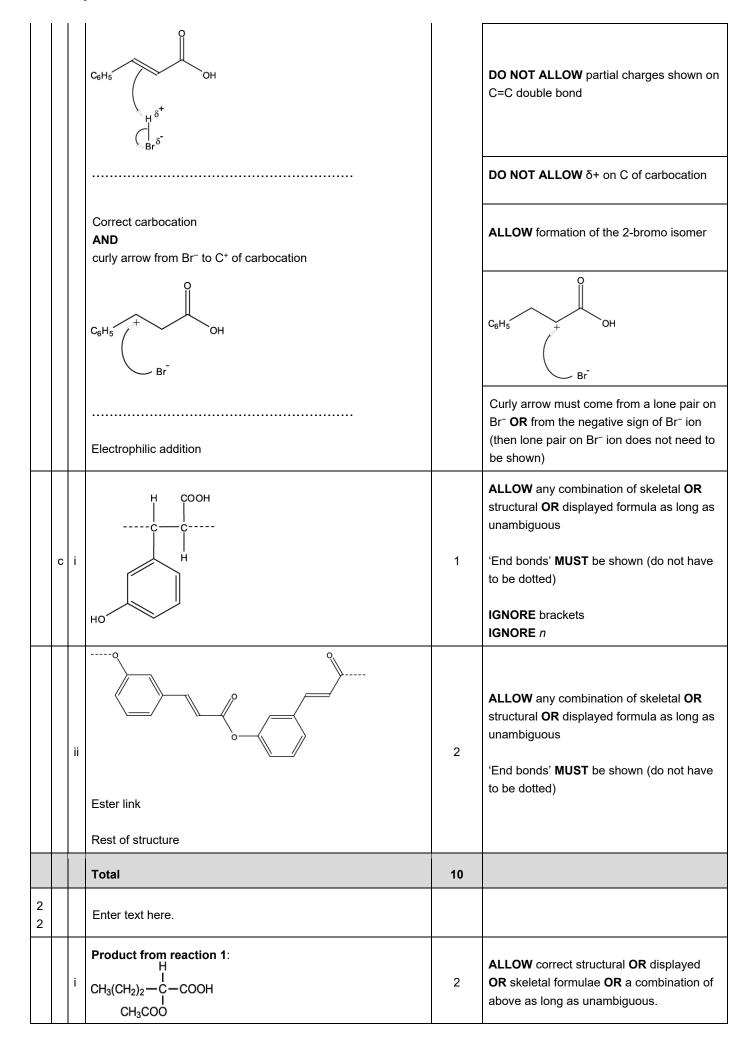
Candidate were required to apply their knowledge of the reactions of alcohols to suggest the structures of the five compound **B–F**. Generally this question was answered well and most candidates scored three or more marks. The majority of candidates chose to use displayed formula. Other candidates opted to use skeletal formula and only a small proportion showed structural formulae.

Almost all of the candidates were able to correctly calculate the molar mass of **B** as 74 g mol⁻¹ which allowed most to suggest a structure for the compound. Many candidates used the information that **B** forms a ketone and provided the correct structure of butan-2-ol, although a significant proportion of candidates suggested **B** was butan-1-ol.

The more able candidates identified the structure of **C** as butanone, but a large proportion of the cohort did not suggest a structure. Some candidates who used displayed formula for **C** often included an extra hydrogen atom on the carbonyl group.


Most candidates were able to suggest a correct structure of carboxylic acid **D** and therefore deduced that the reaction between **B** and **D** was an esterification

					reaction. The most difficult part of this question was identifying E and F . The most able candidates provided a correct structure for the ester, however some candidates often missed of one of the hydrogen atoms from their displayed formula. The most common incorrect response was to the structure of butyl propanoaoate. Some candidates identified the other compound formed in the reaction of B and D as water but a large proportion gave a second ester. In general the structures given by candidates were accurately drawn but candidates should be reminded to check their work carefully to ensure the correct number of atoms and bonds are present if using displayed formula.
			Total	6	
1 8	а	i	Using a pH probe on a data logger OR pH meter	1	
		ii	FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer = 0.11(0) (mol dm ⁻³), award 2 marks	2	IF there is an alternative answer, check to see if there is any ECF credit possible using working below.
			concertation of CH_000H = $\frac{2.75 \times 10^{5} \times 100}{250}$ = 0.11(0) (mol dm ⁻³)		ANNOTATE WITH TICKS AND CROSSES, etc ALLOW ECF: n(NaOH) × 1000/25.00
	b	i	Brilliant yellow AND Vertical section / rapid pH change matches the pH range / end point / colour change (of the indicator)	1	ALLOW pH range (of the indicator) matches equivalence point ALLOW end point / colour change matches equivalence point IGNORE colour change matches end point (colour change is the same as end point)
		ii	Explanation: Acid / H ⁺ reacts with A ⁻ AND equilibrium (position) shifts towards HA (to give a red colour)	4	ALLOW direction of equilibrium shift if


			Alkali / OH ⁻ reacts with HA/H ⁺ AND equilibrium (position) shifts towards A ⁻ (to give a yellow colour) At end point, equal amounts of HA and A ⁻ AND orange colour		equilibrium shown: HA ≓ H ⁺ + A ⁻ i.e. 'towards HA' is equivalent to 'to left' i.e. 'towards A ^{-'} is equivalent to 'to right'
			Total	8	ALLOW yellow-red colour
1 9	а	i	ОН н СN	1	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous
		ii	aqueous acid OR H ⁺ / H ₂ O	1	ALLOW H⁺(aq) / H₂SO₄(aq) / HC/(aq)
		ii i	Angle a = 109.5° Angle b = 104.5° Angle c = 120° Two correct All three correct	2	ALLOW 109–110° ALLOW 104–105°
	b	i	It is an electron pair donor OR donates a lone pair	1	
		ii	$HO - CH_{3} \xrightarrow{\delta} \\ HO - CH_{3} \xrightarrow{\delta} \\ HO - CH_{3} \xrightarrow{\delta} \\ Curly arrow from HO^{-} to carbon atom of C=O bond CO^{-} \\ Correct dipole AND curly arrow from C=O bond to O^{-} \\ HO - CH_{3} \xrightarrow{\delta} \\ HO - CH_{3} \xrightarrow{\delta} \\ HO - CH_{3} \xrightarrow{\delta} \\ Curly arrow from negative charge on oxygen to C-O bond (to reform carbonyl \pi-bond) Curly arrow from C-O single bond to oxygen atom (to form methoxide ion)$	4	Curly arrow must come from lone pair on O of HO ⁻ OR OH ⁻ OR from minus sign on HO ⁻ ion (No need to show lone pair if curly arrow came from negative charge on O) IGNORE dipole on C–O single bond Curly arrow must come from lone pair on O OR from minus sign on O ⁻ ion

				(No need to show lone pair if curly arrow came from negative charge on O)
	ii i	Correct organic product: $H_3 - C_4 - C_4$	2	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous
		Total	11	
2 0	i	reaction with bases: neutralisation AND reaction with metals: redox	1	Enter text here.
	ii	correctly calculates $n(\mathbf{A}) = \frac{1.125}{90} = 0.0125 \text{ (mol)}$ volume of H ₂ = $\frac{0.0125}{2} \times 24,000 = 150 \text{ cm}^3$ units required	2	ALLOW 0.15 dm ³ ALLOW ECF from <i>n</i> (A)
	ii i	$C_6H_{12}O_6Mg$	1	DO NOT ALLOW (C ₃ H ₆ O ₃) ₂ Mg
	i V	Type of reaction of COOH: e.g. esterification AND reagents and conditions e.g. CH ₃ OH AND H ₂ SO ₄ Organic product of COOH reaction Type of reaction of -OH AND reagents and conditions Organic product of -OH reaction	4	ALLOW esterification with any stated alcohol e.g. product from CH ₃ OH/H ₂ SO ₄ → CH ₃ (CHOH)COOCH ₃ Many possible reactions of secondary alcohol possible, e.g. oxidation with K ₂ Cr ₂ O ₇ / H ₂ SO ₄ + heat → CH ₃ (CO)COOH elimination with H ₂ SO ₄ / H ₃ PO ₄ + heat → CH ₂ = CHCOOH esterification with CH ₃ COOH / H ₂ SO ₄ OR CH ₃ COC/ → CH ₃ (CHOOCCH ₃)COOH bromination with NaBr / H ₂ SO ₄ → CH ₃ (CHBr)COOH ALLOW self-polymerisation as reaction for either group (if another reaction example given) condensation polymerisation with H ₂ SO ₄ → [OCH(CH ₃)CO] ₇

6.1.3 Carboxylic Acids and Esters

6.1.3 Carboxylic Acids and Esters

		Product from reaction 2: Вг СН ₃ (СН ₂) ₂ —С—СООН Н		
	ii	(<i>E</i>)-pent-2-enoic acid	1	ALLOW "E" with or without brackets
	ii i	$CH_{3}CH_{2} COOH$ $C=C$ $CH_{3}CH_{2} H$ $CH_{3}CH_{2} H$ $CH_{3}CH_{2} H$ $-C-C$ I I $COOH$ $COOH$	2	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous. 'End bonds' MUST be shown (solid or dotted) IGNORE brackets and / or <i>n</i>
	i v	combustion for energy production use as an organic feedstock for the production of plastics and other organic chemicals	2	
		Total	7	
			-	
2 3	i	step 1 = (conc.) H ₂ SO ₄ AND CH ₃ CH ₂ OH	1	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous.
	i	step 1 = (conc.) H ₂ SO ₄ AND CH ₃ CH ₂ OH $\downarrow \qquad \qquad$		OR skeletal formulae OR a combination of