Mark scheme - Carboxylic Acids and Esters

Questi on		Answer/Indicative content	Marks	Guidance
1	i	Reagents $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ AND acid AND reflux $\sqrt{ }$ Equation $\mathrm{HO}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OH}+4[\mathrm{O}] \rightarrow \mathrm{HOOC}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COOH}+2 \mathrm{H}_{2} \mathrm{O}$ [O] AND $\mathrm{H}_{2} \mathrm{O} \checkmark$ Correctly balanced equation \checkmark	$\begin{gathered} 3 \\ (\mathrm{AO} 1.1 \\) \\ (\mathrm{AO} 2.5 \\) \\ (\mathrm{AO} 2.6 \\ \mathrm{r} \end{gathered}$	ALLOW $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \mathrm{OR} \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ ALLOW $\mathrm{H}_{2} \mathrm{SO}_{4}$ OR HCl OR H^{+} ALLOW words. e.g. 'acidified dichromate’ ALLOW a small slip in formula for dichromate e.g $\mathrm{KCr}_{2} \mathrm{O}_{7}$, Examiner's Comments Many candidates did not correctly balance this equation or missed water as a product entirely.
	ii	 Diagram showing correct dipole charges on each end of one hydrogen bond between a water molecule and a diacid \checkmark Hydrogen bond between one lone pair on O atom in one of the molecules and the H atom of another AND Hydrogen bonding stated or labelled on diagram	$\begin{gathered} 2 \\ (\mathrm{AO} 2.1 \\ \times 2) \end{gathered}$	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous DO NOT ALLOW $\delta+$ on H atoms of CH_{2} group ALLOW H-bond for hydrogen bond ALLOW H bond between $\mathrm{C}=\mathrm{O}$ and $\mathrm{H}_{2} \mathrm{O}$, i.e. IF diagram is not labelled, ALLOW hydrogen bond/H bond from text Examiner's Comments Candidates who answered this question well had clear, labelled diagrams. Too often, labels, dipoles and lone pairs were missing.
		Total	5	

2		6 curly arrows correct $\checkmark \checkmark \checkmark \checkmark$ 5 curly arrows correct $\checkmark \checkmark \checkmark$ 4 curly arrows correct $\checkmark \checkmark$ 3 curly arrows correct \checkmark	$\begin{gathered} 4 \\ (\mathrm{AO} \\ 3.1 \times 4) \end{gathered}$	IGNORE any added charges OR dipoles. Marks solely for curly arrows IGNORE any curly arrows on bottom structures (not in boxes): Examiner's Comments Most candidates showed a good understanding and appreciation of drawing curly arrows. It must be stressed that curly arrows that do not start from a lone pair, negative charge or a bond cannot be credited. Lower-attaining candidates often drew imprecisely positioned curly arrows, curly arrows in the wrong direction or to the wrong atoms. For their response to be credited with marks, candidates should position curly arrows to ensure credit when outlining reaction mechanisms.
		Total	4	
3	a	Product from $\mathrm{Na}_{2} \mathrm{CO}_{3}$	3	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous ALLOW -COO- OR -COONa DO NOT ALLOW negative charge on C atom DO NOT ALLOW -COO-Na (covalent bond) IGNORE connectivity of phenol OH group

Product from $\mathrm{NaOH}(\mathbf{a q})$

	b	One mark for each correct structure/reagent as shown below	4	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous ALLOW PCl_{5} OR PCl_{3} for reagent mark. IGNORE references to temperature for reagent mark IGNORE additional reagents shown with $\mathrm{SOCl}_{2} / \mathrm{PCl}_{5} / \mathrm{PCl}_{3}$ e.g. $\mathrm{H}_{2} \mathrm{O}, \mathrm{AlCl}_{3}, \mathrm{HCl}$ etc. IGNORE names (question asks for structures of organic compounds and formula of reagent) DO NOT ALLOW more than two repeat units ALLOW 1 mark for one correct repeat unit e.g. 'End bonds' MUST be shown (do not have to be dotted) ALLOW the ' O ' at either end i.e. IGNORE brackets IGNORE n Examiner's Comments Compound \mathbf{H} was also the focus for this question. Most candidates were able to provide the structure of the acyl chloride obtained from \mathbf{H} but only some identified SOC_{2} as the correct reagent. Common incorrect reagents included HCl and AlC_{3}. Most candidates recognised that polymer I was a polyester but only some were able to draw two repeat units correctly. Candidates are advised to practice drawing different polymers, taking care to ensure the correct number of repeat units are present when a specific number is required.
		Total	7	
4		Product from excess $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{H}_{2} \mathrm{SO}_{4}$	3	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous

	Equation $2 \mathrm{HOCH}(\mathrm{R}) \mathrm{COOH}+\mathrm{Mg} \rightarrow(\mathrm{HOCH}(\mathrm{R}) \mathrm{COO})_{2} \mathrm{Mg}+\mathrm{H}_{2}$ Organic product \checkmark Balance $\sqrt{ }$ Type of reaction		ALLOW $2 \mathrm{HOCH}(\mathrm{R}) \mathrm{COOH}+\mathrm{Mg}$ $\rightarrow 2 \mathrm{HOCH}_{(\mathrm{R}) \mathrm{COO}^{-}+\mathrm{Mg}^{2+}+\mathrm{H}_{2}}$ ALLOW multiples IGNORE poor connectivity to OH groups Given in question Examiner's Comment: Candidates found this part difficult and the problem presented many opportunities for errors. Many candidates tried to show charges for the salt formed but often the 2+ charge was missing on Mg^{2+} or Mg^{+}was shown. The balanced equation required a balancing 2 before compound A but this was often omitted. Candidates using skeletal formulae fared better than attempts to show structural formulae such as HOCHRCOOH, with many omitting the H atom from CHR. Few candidates identified the reaction as redox, with many giving neutralisation instead.
ii	Equation Organic product \checkmark Balance \checkmark Type of reaction Condensation OR esterification \checkmark	3	ALLOW correct structural OR skeletal OR displayed formula OR mixture of the above as long as non- ambiguous ALLOW 1 mark of the 2 equation marks for formation of ' 3 ring' with balanced equation: ALLOW condensation polymerisation ALLOW addition-elimination IGNORE elimination IGNORE dehydration Examiner's Comment: As with 4(b)(ii), candidates found this question difficult. It was not often that the dimer was seen but, when it was, the structure was usually correct. Balancing required $2 \mathrm{H}_{2} \mathrm{O}$ and the balancing 2 was often omitted. In contrast with 4(b)(i), many more

- Units of cm^{3} for initial, final and titres \checkmark

Mean titre

- mean titre $=\frac{22.55+22.45}{2}=22.50$ OR $22.5 \mathrm{~cm}^{3} \checkmark$
i.e. using concordant (consistent) titres

ALLOW units with each value
ALLOW brackets for units, i.e. (cm^{3})

ALLOW ECF from incorrect concordant titres

Examiner's Comment:

This question should have been four straightforward marks, but it was actually found very challenging by candidates. Most read the scales correctly but then did not present their findings clearly, often scattering unlabelled numbers around, omitting units with absence of any heading linking them to the burettes.
0.60 was very often shown as 0.6 and 22.80 as 22.8 .

Candidates were expected to take the mean of their closest titres but a significant number took an average of all three titres instead. The mark scheme allowed for a mean titre obtained from incorrect titres.

Candidates need to appreciate the importance of communicating their results in a clear and comprehensive way with headings and units, and showing numerical values to the accuracy of the apparatus used.

ALLOW 3SF or more throughout
IGNORE trailing zeroes, e.g. ALLOW 0.084 for 0.0840
\qquad

$$
n(\mathrm{NaOH})=0.0840 \times \frac{22.50}{1000}=1.89 \times 10^{-3}(\mathrm{~mol}) \checkmark
$$

ii $n(\mathbf{A})$ in $250 \mathrm{~cm}^{3}=10 \times 1.89 \times 10^{-3}=1.89$
$\times 10^{-2}(\mathrm{~mol}) \checkmark$
$M(A)=\frac{2.495}{1.89 \times 10^{-2}}=132\left(\mathrm{~g} \mathrm{~mol}^{-1}\right) \checkmark$
M (alkyl group) $(=132-75)=57 \checkmark$

ALLOW ECF from incorrect mean titre in 4a(i)
e.g. From $22.60 \mathrm{~cm}^{3}$ (mean of all 3 titres in
(i), $n(\mathrm{NaOH})=1.8984 \times 10^{-3}(\mathrm{~mol})$

ALLOW ECF from incorrect $n(\mathrm{NaOH})$

ALLOW ECF from incorrect $n(\mathbf{A})$

ALLOW ECF from incorrect $M(\mathbf{A})-75$

					marks was seen and the question discriminated extremely well.
			Total	10	
8		i	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{3} \checkmark$	1	
		ii	2,3- dihydroxybutanedioic acid \checkmark	1	ALLOW 2,3-dihydroxybutane-1,4-dioic acid ALLOW absence of hyphens or extra hyphen or space, e.g. 2,3-dihydroxy butanedioic acid ALLOW full stops or spaces between numbers e.g. 2.3 dihydroxybutanedioic acid
		ii	 Correct amide link \checkmark Rest of structure \checkmark	2	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous 'End bonds' MUST be shown IGNORE brackets IGNORE n
			$\left[\mathrm{H}_{3} \mathrm{~N}^{+}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{NH}_{3}{ }^{+}\right]\left[-\mathrm{OOC}(\mathrm{CHOH})_{2} \mathrm{COO}^{-}\right]$ OR $\left[\mathrm{H}_{3} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{NH}_{3}\right]^{2+}\left[\mathrm{OOC}(\mathrm{CHOH})_{2} \mathrm{COO}\right]^{2-}$ Positive ion correct $\sqrt{ }$ Negative ion correct \checkmark	2	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous ALLOW charge either on N atom or $\mathrm{NH}_{3}{ }^{+}$ Negative charge must be on COO^{-} ALLOW $\left[\mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{NH}_{3}{ }^{+}\right]$[$\left.-\mathrm{OOC}(\mathrm{CHOH})_{2} \mathrm{COOH}\right]$
			Total	6	
9	a		Reagent and observation sodium carbonate AND Fizzing/effervescence/bubbling \checkmark Equation Correctly balanced equation \checkmark e.g. $2 \mathrm{RCOOH}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow 2 \mathrm{RCOONa}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$	2	Note: both reagent and observation are required for first mark ALLOW name or formula for any suitable carbonate e.g NaHCO_{3}, potassium carbonate etc. ALLOW reagent from equation if not stated elsewhere
			Reagent and observation Tollens' (reagent) AND Silver (mirror) \checkmark	2	Note: both reagent and observation are required for first mark ALLOW ammoniacal silver nitrate OR

	Equation $\mathrm{RCHO}+[\mathrm{O}] \rightarrow \mathrm{RCOOH} \checkmark$		$\mathrm{Ag}^{+} / \mathrm{NH}_{3}$ ALLOW $\mathrm{H}^{+} / \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ OR acidified (potassium/sodium) dichromate AND Orange to green (this would identify the aldehyde from the carboxylic acid, ketone and esters)
b	2,4-dinitrophenylhydrazine AND Orange/yellow/red precipitate \checkmark	1	ALLOW errors in spelling ALLOW 2,4(-)DNP OR 2,4(-)DNPH ALLOW Brady's reagent or Brady's Test ALLOW solid OR crystals OR ppt as alternatives for precipitate
c	$\mathrm{CH}_{3} \mathrm{COOC}\left(\mathrm{CH}_{3}\right)_{3}+\mathrm{NaOH} \rightarrow \mathrm{CH}_{3} \mathrm{COONa}+\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$ $\mathrm{CH}_{3} \mathrm{COONa} \sqrt{ }$ Rest of equation correct \checkmark OR $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCOOCH}_{3}+\mathrm{NaOH} \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCOONa}+\mathrm{CH}_{3} \mathrm{OH}$ ($\left.\mathrm{CH}_{3}\right)_{3} \mathrm{CCOONa} \downarrow$ Rest of equation correct \checkmark	2	Note: the hydrolysis of either ester may be given ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous DO NOT ALLOW molecular formulae of products (question requires structures of products to be shown)
	Reagent and observation $\mathrm{H}^{+} / \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ OR acidified (potassium/sodium) dichromate AND ii Equation $\mathrm{CH}_{3} \mathrm{OH}+[\mathrm{O}] \rightarrow \mathrm{HCHO}+\mathrm{H}_{2} \mathrm{O}$ OR $\mathrm{CH}_{3} \mathrm{OH}+2[\mathrm{O}] \rightarrow \mathrm{HCOOH}+\mathrm{H}_{2} \mathrm{O} \checkmark$	2	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous DO NOT ALLOW molecular formulae (question requires structures of organic compounds to be shown)
	${ }^{13} \mathrm{C}$ NMR (1 mark) (It is) not possible to identify (the esters) with ${ }^{13} \mathrm{C}$ NMR AND (both) spectra would contain four peaks (with similar chemical shifts) \checkmark ${ }^{1} \mathrm{H}$ NMR (2 marks) (It is) possible to identify (the esters) with ${ }^{1} \mathrm{H}$ NMR	3	ALLOW 'same number of peaks' in place of 'four peaks'

6.1.3 Carboxylic Acids and Esters

		(${ }^{1} \mathrm{H}$ NMR spectrum of) $\mathrm{CH}_{3} \mathrm{COOC}\left(\mathrm{CH}_{3}\right)_{3}$ has a singlet/peak between 2.0-3.0 (ppm) (${ }^{1} \mathrm{H}$ NMR spectrum of $)\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCOOCH}_{3}$ has a singlet/peak between 3.0-4.3 (ppm) All three correct statements $\checkmark \checkmark$ Any two correct statements \checkmark		ALLOW any value or range of values within 2.0-3.0 ALLOW any value or range of values within 3.0-4.3
	d	Possible structures for ketone (2 marks) All three correct $\checkmark \checkmark$ Any two correct \checkmark Aldehyde (3 marks) Peak at (δ) 1.2 shows HC-R AND No H on adjacent C atom as peak is singlet \checkmark Peak at (ס) 9.6 shows $\mathrm{H}-\mathrm{C}=\mathrm{O}$ AND No H on adjacent C atom as peak is singlet \checkmark OR (2,2-)dimethylpropanal \checkmark	5	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous IGNORE names of ketones
		Total	17	
1 0		Dipole shown on $\mathrm{C}=\mathrm{O}$ bond, $\mathrm{C}^{\text {¢ }}$ and $\mathrm{O}^{\text {- }}$, , AND curly arrow	3	ANNOTATE ANSWER WITH TICKS AND CROSSES

6.1.3 Carboxylic Acids and Esters

		$n(\text { phenol })=n(\text { salicylic acid })=0.035(0) \times \frac{100}{45.0}=0.0778(\mathrm{~mol})$ Mass of phenol $=0.0778 \times 94.0=7.31(\mathrm{~g}) \checkmark$		ALLOW Mass phenol reacted $=0.035 \times$ $94.0=3.29(\mathrm{~g})$ $\begin{aligned} & \text { ALLOW Mass of phenol used }=3.29 \times \\ & \frac{100}{45.0}=7.31(\mathrm{~g}) \end{aligned}$ Note: 1.48 g would get 2 marks (use of 45.0/100 instead of 100/45.0) 7.30 g would get 2 marks (use of 0.0777 for moles phenol)
b		 Skeletal formula of ethanoic acid	2	IF skeletal formulae are not used ALLOW one mark if both the structures of aspirin AND ethanoic acid are correct IGNORE names
		 AND Acid (catalyst) \checkmark	1	Note: both the structure and condition are required for the mark ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous ALLOW H ${ }^{+} / \mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{H}_{3} \mathrm{PO}_{4} /$ named mineral acid
	ii	Diagram Diagram showing correct apparatus for distillation \checkmark i.e. - Round-bottom/pear-shaped flask	2	DO NOT ALLOW conical flask, volumetric flask, beaker in place of round bottomed/pear shaped flask

		- Condenser (correctly orientated) - Stopper/thermometer - Delivery tube and suitable collection vessel Labels (Round-bottom/pear-shaped) flask AND condenser AND heat (source) \checkmark		DO NOT ALLOW diagram mark if top of distillation head not closed Note: suitable collection vessels include: conical flask, boiling tube, test-tube, beaker etc.
		Total	13	
1			1	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous Examiner's Comments A good discriminator. Many failed to produce the correct cyclic structure.
		Total	1	
2		$\begin{aligned} & \mathrm{C}_{17} \mathrm{H}_{35} \mathrm{COOH}+\mathrm{NaOH} \\ & \rightarrow \mathrm{C}_{17} \mathrm{H}_{35} \mathrm{COO}-\mathrm{Na}^{+}+\mathrm{H}_{2} \mathrm{O}, ~ \end{aligned}$	1	ALLOW $\mathrm{C}_{17} \mathrm{H}_{35} \mathrm{COONa}$ IGNORE state symbols Examiner's Comments Very well answered. Most candidates could write the correct equation.
		Total	1	
3	i	$2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COONa}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \checkmark$	1	IGNORE state symbols and use of equilibrium sign FOR $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$ ALLOW $\mathrm{H}_{2} \mathrm{CO}_{3}$ ALLOW $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-} \mathrm{Na}^{+} \mathrm{OR} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-}+$ Na^{+} BUT BOTH + and - charges must be shown ALLOW NaC ${ }_{2} \mathrm{H}_{5} \mathrm{COO}$

				Examiner's Comments Equations for reactions of weak acids continue to improve. lonic signs within the formula of sodium propanoate were allowed but both were then needed. Common errors included an incorrect formula of sodium propanoate, usually $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}\right)_{2} \mathrm{Na}$, sodium carbonate as NaCO_{3} or an equation with correct species but unbalanced. Candidates are recommended to carefully check the formulae for missing atoms.
	ii	$\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O} V$	1	ALLOW $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}+\mathrm{OH}^{-} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-}$ $+\mathrm{H}_{2} \mathrm{O}$ IGNORE state symbols Examiner's Comments The required equation using $\mathrm{H}^{+}(\mathrm{aq})$ and $\mathrm{OH}^{-}(\mathrm{aq})$ was commonly seen but a significant number of candidates wrote an equation using $\mathrm{H}^{+}(\mathrm{aq})$ and $\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})$, perhaps writing an ionic equation for the reaction in (i) rather than a different reaction.
		Total	2	
4			3	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous ALLOW - $\mathrm{O}^{-} \mathrm{Na}^{+} \mathrm{OR}-\mathrm{O}^{-}$(cation not required) DO NOT ALLOW —O—Na (covalent bond) DO NOT ALLOW -O (without the sodium) ALLOW delocalised carboxylate Examiner's Comments The majority scored two marks here. The question had a three mark total for drawing two structures and this may have prompted some candidates to incorrectly form a salt with the alcohol group in reaction 1. Many were able to draw a correct structure for the ester formed in reaction 2, but very few protonated the amine group in acidic conditions. The protonation of hydrolysis

				products has been well represented in recent papers.
	ii	perfume / fragrance / flavouring \checkmark	1	IGNORE solvent OR food additive Examiner's Comments Well answered with most of the correct responses referring to perfumes and flavourings which are the uses listed in the specification. Common responses marked as incorrect were suggestions that this ester could be used for making dyes, polymers or textiles.
	$\begin{aligned} & \text { ii } \\ & \text { i } \end{aligned}$	Reaction 3: (hot) ethanolic ammonia Reaction 4: oxidation \checkmark Reaction 5: hydrolysis \checkmark	3	ALLOW NH3 (dissolved) in ethanol IGNORE other conditions ALLOW oxidisation / oxidised DO NOT ALLOW redox ALLOW nucleophilic addition-elimination DO NOT ALLOW nucleophilic substitution IGNORE acid / base Examiner's Comments Most candidates were able to score at least one mark here, usually for correctly identifying reaction 4 as an oxidation reaction. Although the use of excess reagent was not required for reaction 3, some missed ethanol as an essential solvent and reaction 5 was occasionally described as a reduction.
		Total	7	
$\begin{aligned} & 1 \\ & 5 \end{aligned}$	i	reagent $=\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ AND $\mathrm{H}_{2} \mathrm{SO}_{4} \quad \checkmark$	3	ALLOW acidified dichromate ALLOW H ${ }^{+}$/ any acid IGNORE concentration of acid ALLOW $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ / (potassium OR sodium) dichromate((VI)) ALLOW acidified MnO_{4}^{-} ALLOW Tollens' reagent / ammoniacal silver nitrate IGNORE conditions ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous ALLOW ECF from incorrect compound C Check positions of OH groups

(
\(\left.$$
\begin{array}{l|l|l|} & \begin{array}{l}\text { arrow from the negative charge or lone pair } \\
\text { on the oxygen atom of the intermediate to } \\
\text { Hin } \mathrm{H}_{2} \mathrm{O} \text { AND from the O—H bond to the } \\
\text { O in } \mathrm{H}_{2} \mathrm{O} \text {. Dipole not required on water } \\
\text { molecule }\end{array}
$$

Penalise missing -OH on intermediate only\end{array}\right\}\)| IGNORE product - already given credit in |
| :--- |
| part (i) |
| Examiner's Comments |

	ii	(Bromine) would be decolourised / turn (from orange / red / yellow / brown) to colourless OR white precipitate / solid / emulsion (formed) \checkmark	1	IGNORE goes clear DO NOT ALLOW other colours for bromine IGNORE cream precipitate DO NOT ALLOW salicylic acid turns colourless / decolourised IGNORE temperature / fumes Examiner's Comments The observation for the reaction of a phenol with bromine was very well known and many candidates offered two correct observations when only one was required to score the mark.
			1	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous MUST be all correct to score mark ALLOW molecular formulae, i.e. $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{3}+\mathrm{Br}_{2} \rightarrow \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{3} \mathrm{Br}^{+} \mathrm{HBr}$ Examiner's Comments A very well answered question. Most candidates copied the structural formulae given in the question. Some made errors when they unnecessarily converted the structures into molecular formulae. HBr was occasionally missing as a product.
		$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH} / \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3} /$ propan(-)2(-)ol AND acid $/ \mathrm{H}^{+} / \mathrm{H}_{2} \mathrm{SO}_{4}$ (catalyst) $\quad \checkmark$	1	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous ALLOW 2-propanol DO NOT ACCEPT incorrect name or incorrect formula of alcohol IGNORE reflux / concentrated (acid) Examiner's Comments Many candidates correctly gave the formula for propan-2-ol and included an acid catalyst. Common non-scoring answers omitted the acid or the alcohol or gave an incorrect name for the alcohol.

				marks for incorrectly positioned curly arrows.
	ii	(In salicylic acid) lone pair / pair of electrons on $\mathrm{O}(\mathrm{H}) /$ phenol is \sim (partially) delocalised into the ring \checkmark electron density increases / is high ORA \checkmark $\mathrm{Br}_{2} /$ electrophile is (more) polarised ORA \checkmark QWC: delocalised / delocalized / delocalise etc. must be spelled correctly in the correct context at least once	3	ALLOW diagram to show movement of lone pair into ring but delocalised ring must be mentioned ALLOW lone pair / pair of electrons on $\mathrm{O}(\mathrm{H})$ / phenol is (partially) drawn / attracted / pulled into delocalised ring IGNORE 'activates the ring' ALLOW more electron rich DO NOT ALLOW charge density or electronegativity ALLOW (salicylic acid) attracts electrophiles more/more susceptible to electrophilic attack ALLOW Br_{2} is (more) attracted $\mathrm{OR}_{\mathrm{Br}}^{2}$ is not polarised by benzene OR induces dipoles (in bromine / electrophile) Delocalise(d) needed to score the first marking point Examiner's Comments This question was very well answered with the majority of candidates scoring at least two marks. The most common errors were the omitting the words delocalised or lone pair or failure to use the word delocalised in the correct context.
		Total	11	
		Molar mass of $\mathbf{B}=74 \sqrt{ }$ B-F clearly identified	6	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC Check and annotate page 19 below this response $\text { Molar mass }=\frac{2.59}{0.035}=74$ For structure of $\mathbf{B}, \mathbf{C}, \mathbf{D}$ or \mathbf{E} / F ALLOW correct displayed OR correct structural formula OR correct skeletal formula OR mixture of the above as long as unambiguous. DO NOT ALLOW missing H atom(s) in a

	B/alcohol: C/ketone: D/carboxylic acid: E and F : $\mathrm{H}_{2} \mathrm{O} /$ water \checkmark		displayed formula for one structure but ALLOW missing H atoms in subsequent structures. IGNORE names of organic compounds E and \mathbf{F} can be identified either way round ALLOW $\mathrm{H}_{2} \mathrm{O}$ or displayed formula for mark For \mathbf{E} and \mathbf{F} - ALLOW the two optical isomers Examiner's Comments Candidate were required to apply their knowledge of the reactions of alcohols to suggest the structures of the five compound B-F. Generally this question was answered well and most candidates scored three or more marks. The majority of candidates chose to use displayed formula. Other candidates opted to use skeletal formula and only a small proportion showed structural formulae. Almost all of the candidates were able to correctly calculate the molar mass of \mathbf{B} as $74 \mathrm{~g} \mathrm{~mol}^{-1}$ which allowed most to suggest a structure for the compound. Many candidates used the information that B forms a ketone and provided the correct structure of butan-2-ol, although a significant proportion of candidates suggested \mathbf{B} was butan-1-ol. The more able candidates identified the structure of \mathbf{C} as butanone, but a large proportion of the cohort did not suggest a structure. Some candidates who used displayed formula for \mathbf{C} often included an extra hydrogen atom on the carbonyl group. Most candidates were able to suggest a correct structure of carboxylic acid \mathbf{D} and therefore deduced that the reaction between \mathbf{B} and \mathbf{D} was an esterification

6.1.3 Carboxylic Acids and Esters

			Alkali / OH^{-}reacts with $\mathrm{HA} / \mathrm{H}^{+}$AND equilibrium (position) shifts towards A^{-}(to give a yellow colour) At end point, equal amounts of HA and A^{-} AND orange colour		equilibrium shown: $\mathrm{HA} \rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{-}$ i.e. 'towards HA' is equivalent to 'to left' i.e. 'towards A^{-1} is equivalent to 'to right' ALLOW yellow-red colour
			Total	8	
1	a			1	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous
		ii	aqueous acid $\mathrm{OR} \mathrm{H}^{+} / \mathrm{H}_{2} \mathrm{O}$	1	ALLOW H ${ }^{+}(\mathrm{aq}) / \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) / \mathrm{HC} /(\mathrm{aq})$
			Angle $\mathrm{a}=109.5^{\circ}$ Angle $b=104.5^{\circ}$ Angle c $=120^{\circ}$ Two correct All three correct	2	ALLOW 109-110 ${ }^{\circ}$ ALLOW 104-105 ${ }^{\circ}$
	b	i	It is an electron pair donor OR donates a lone pair	1	
		ii	 Curly arrow from HO^{-}to carbon atom of $\mathrm{C}=\mathrm{O}$ bond Correct dipole AND curly arrow from $\mathrm{C}=\mathrm{O}$ bond to $\mathrm{O}^{\delta-}$ Curly arrow from negative charge on oxygen to $\mathrm{C}-\mathrm{O}$ bond (to reform carbonyl m-bond) Curly arrow from $\mathrm{C}-\mathrm{O}$ single bond to oxygen atom (to form methoxide ion)	4	Curly arrow must come from lone pair on O of $\mathrm{HO}^{-} \mathbf{O R} \mathrm{OH}^{-}$OR from minus sign on HO^{-}ion (No need to show lone pair if curly arrow came from negative charge on O) IGNORE dipole on $\mathrm{C}-\mathrm{O}$ single bond Curly arrow must come from lone pair on O OR from minus sign on O^{-}ion

6.1.3 Carboxylic Acids and Esters

				(No need to show lone pair if curly arrow came from negative charge on O$)$

6.1.3 Carboxylic Acids and Esters

| Total | | 8 | |
| :--- | :--- | :--- | :--- | :--- |

6.1.3 Carboxylic Acids and Esters

6.1.3 Carboxylic Acids and Esters

		Product from reaction 2 :		
	ii	(E)-pent-2-enoic acid	1	ALLOW " E " with or without brackets
	ii		2	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous. 'End bonds' MUST be shown (solid or dotted) IGNORE brackets and / or n
	$\left\|\begin{array}{l} i \\ v \end{array}\right\|$	combustion for energy production use as an organic feedstock for the production of plastics and other organic chemicals	2	
		Total	7	
$\begin{array}{\|l\|l} 2 \\ 3 \end{array}$	i	step $1=$ (conc.) $\mathrm{H}_{2} \mathrm{SO}_{4}$ AND CH3 $\mathrm{CH}_{2} \mathrm{OH}$	1	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous.
	ii	BOTH organic structures balanced equation	2	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous.
		Total	3	

